吹制模具制造还有一段使用“浸入加工”的历史。这种方法涉及使用有供水流通过的大开孔铸造模具。然而,这些系统把冷却水集中在部件的关键部位比如壁厚较大的部分或者尾部毛边。这种技术不能提供用于热量传送的水的湍流。切钢工具中一种钻制的水路系统允许的流量通过水路并且允许选择在需要冷却的位置布置水路。建议在要求高性能冷却和明确温度控制的所有系统中使用钻制水路系统。
为了形成一个稳定的部件,这个等量的热能必须被除掉。根本上讲,输出的能量必须与输入的能量相等。注意所有晶体材料的塑化要求的热能几乎是非晶体树脂的一倍。这在熔体准备时通常没有问题,尽管给料螺杆结构会影响熔体的准备。但是,对于烯烃材料而言两倍的热量必须被除掉,而且就具有竞争性的非晶体树脂而言通常还是在同一个循环时间内,它确实含有这一层意思。因此,这种工具对烯烃树脂就要求较多的模具冷却以使循环时间保持竞争性。这些树脂的结晶度使这一点成为一个非常重要的问题,因为除热速度太慢会影响晶体增加并影响制成品的翘曲和尺寸的稳定性。
在模腔中布置冷却管线和型芯钢时请考虑实际的部件结构。司空见惯的作法是,管线的布置在所有其他的设计问题之后,并且通常没有通过好的管线布置使冷却达到的这个选择余地。请在设计的早期阶段预先考虑这些问题。如果部件有较厚部分,那么请考虑把该管线布置得稍微靠近墙壁一点或者布置两个小直径管线代替一根管线。深型芯的冷却一直是一个难题。随着部件的冷却,它将向型芯上收缩并脱离模腔。因此,80%的冷却来自型芯钢。然而型芯的表面与体积比小(与模腔比较而言),并且在这个狭窄的空间里获得充足的冷却水非常难。这可以解释为什么很多型芯运行时温度很高。
既然限制物影响GPM,如果某天工具和好的模具调节器连接,另一边与不同直径的软管连接,再与不同长度的软管连接,那么,GPM每天都要变化。湍流变化、热传输变化、冷却效率变化——终会慢慢地影响部件质量。
而且,既然限制物应该保持为少以保证GPM为,那么,应该把这些小量的限制物只布置在腔体和型芯里,这是一条很好的规则。这些部位是湍流位置之所在,也是使用限制物少的结果。在不需要热传输的部位比如联轴器、减压器等形成湍流是没有意义的而且这还会消耗泵的功率。